
Design of FIR and 

IIR Filters



FIR as a class of LTI Filters

Transfer function of the filter is

Finite Impulse Response (FIR) Filters:

N = 0, no feedback



FIR Filters

Let us consider an FIR filter of length M (order N=M-1, watch out!

order – number of delays)



FIR filters

Can immediately obtain the impulse response, with x(n)= (n)



The impulse response is of finite length M, as required

Note that FIR filters have only zeros (no poles). Hence  
known also as all-zero filters

FIR filters also known as feedforward or

non-recursive, or transversal



FIR Filters

Digital FIR filters cannot be derived from analog filters –
rational analog filters cannot have a finite impulse  
response.

Why bother?

1. They are inherently stable
2. They can be designed to have a linear phase

3. There is a great flexibility in shaping their magnitude  
response

4. They are easy and convenient to implement

Remember very fast implementation using FFT?



FIR Filter using the DFT

FIR filter:

Now N-point DFT (Y(k)) and then N-point IDFT (y(n)) can be used  

to compute standard convolution product and thus to perform  

linear filtering (given how efficient FFT is)



Linear-phase filters

The ability to have an exactly linear phase response is the one  
of the most important of FIR filters

A general FIR filter does not have a linear phase response but  
this property is satisfied when

four linear phase filter types



FIR Design Methods

• Impulse response truncation – the simplest
design method, has undesirable frequency
domain-characteristics, not very useful but
intro to …

• Windowing design method – simple and  
convenient but not optimal, i.e. order  
achieved is not minimum possible

• Optimal filter design methods



Back to Our Ideal Low- pass Filter Example



Approximation via truncation
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Approximated filters obtained by truncation
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Window Design Method

spectrum convolution

To be expected …

Truncation is just pre-multiplication by a rectangular window 

– This is not very clever

– obviously one  introduces a delay



Rectangular Window Frequency Response



Window Design Method

M
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M M



Windows –Magnitude of Frequency Response



Summary of Windows Characteristics

We see clearly that a wider transition region (wider main-lobe)  

is compensated by much lower side-lobes and thus less ripples.



Filter realised with rectangular/Hanning windows

Back to our ideal filter

realised with Hanning window

realised with  rectangular 

window

M=16 M=16

There are much 

less ripples for the 

Hanning window 

but  that the 

transition width has 



Transition width can be improved by increasing the size of the  

Hanning window to M = 40

realised with Hanning window

M=40

realised with Hanning window

M=16

Filter realised with Hanning windows



Specification necessary for Window Design Method

Response must not enter shaded regions

c - cutoff frequency

 - maximum 

passband  ripple

 – transition bandwidth

m – width of the  

window mainlobe



Passband / stopband ripples

Passband / stopband ripples are often expressed in dB:

passband ripple = 20 log10 (1+p ) dB,

or peak-to-peak passband ripple  20 log10 (1+2p) dB;  

minimum stopband attenuation = -20 log10 (s ) dB.

Example: p= 6% peak-to-peak passband ripple  20 log10 (1+2p) = 1dB;

s = 0.01 minimum stopband attenuation = -20 log10 (s) = 40dB.

The band-edge frequencies s and p are often called corner frequencies,  
particularly when associated with specified gain or attenuation (e.g. gain =

-3dB).



Summary of Window Design Procedure

• Ideal frequency response has infinite impulse response

• To be implemented in practice it has to be

– truncated

– shifted to the right (to make is causal)

• Truncation is just pre-multiplication by a rectangular window

– the filter of a large order has a narrow transition band

– however, sharp discontinuity results in side-lobe
interference independent of the filter’s order and shape
Gibbs phenomenon

• Windows with no abrupt discontinuity can be used to reduce
Gibbs oscillations (e.g. Hanning, Hamming, Blackman)



Summary of the Key Properties of the Window  

Design Method

5. Peak  
approximation error  
is determined by the  
window shape,  
independent of the  
filter order.

transition  

bandwidth

1. Equal transition bandwidth on both sides of the ideal cutoff  
frequency.

2. Equal peak approximation error in the pass-band and stop-
band.

3. Distance between approximation error peaks is  
approximately equal to the width of the window main-lobe.

4. The width of the main-lobe is wider than the transition band.
approximation error peaks

mainlobe  

width



Summary of the windowed FIR filter design  

procedure

1. Select a suitable window function

2. Specify an ideal response Hd()

3. Compute the coefficients of the ideal filter hd(n)

4. Multiply the ideal coefficients by the window function to  

give the filter coefficients

5. Evaluate the frequency response of the resulting filter  

and iterate if necessary (typically, it means increase M if  

the constraints you have been given have not been  

satisfied)



Multi-band Design



Frequency sampling method



2

IIR vs FIR Filters



IIR as a class of LTI Filters

Difference equation:

Transfer function:

To give an Infinite Impulse Response (IIR), a filter must

0

be

recursive, that is, incorporate feedback N ≠ 0, M ≠

the recursive (previous output) terms feed back
energy into the filter input and keep it going.

(Although recursive filters are not necessarily IIR)



IIR Filters Design from an Analogue Prototype

• Given filter specifications, direct determination 
of filter coefficients is too complex.

• Well-developed design methods exist
analogue low-pass filters

for

• Almost all methods rely on converting
analogue filter to a digital one

an



Analogue filter Rational Transfer Function

( )

5



Analogue to Digital Conversion

Im (z)

Re (z)
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Impulse Invariant method



Impulse Invariant method: Steps

1. Compute the Inverse Laplace transform to
get impulse response of the analogue filter

2. Sample the impulse response (quickly
enough to avoid aliasing problem)

3. Compute z-transform of resulting sequence



Example 1 – Impulse Invariant Method

Consider first order analogue filter

=  1 -

Corresponding impulse response is

vδ -

The presence of delta term prevents sampling of

impulse response which thus cannot be defined

Fundamental problem: high-pass and band-stop filters have 

functions with numerator and denominator polynomials of the 

same degree and thus cannot be designed using this method



Example 2 – Impulse Invariant Method

Consider an analogue filter

Step 1. Impulse response

of the analogue filter

Step 2. Sample the impulse

response

Step 3. Compute z-

transform

The poles are mapped as



Impulse Invariant Method

Indeed, in the general case the poles are mapped as

since any rational transfer function with the numerator
degree strictly less than the denominator degree can be

decomposed to partial fractions

k

and similarly it can be shown

k

k

k

k



Impulse Invariant Method: Stability

Since poles are mapped as:

stable
stable

analogue filter is transformed into
digital filter

< 1k

k

k



Summary of the Impulse Invariant Method



Summary of the Impulse Invariant Method

• Advantage:

– preserves the order and stability of the
analogue filter

• Disadvantages:

– Not applicable to all
band-stop)

filter types (high-pass,

– There is distortion of the shape of
frequency response due to aliasing



Matched z-transform method



Example of Impulse Invariant vs
methods

Matched z transform



Backward Difference Method

The analogue-domain variable s represents differentiation.

We can try to replace s by approximating differentiation operator in the 

digital domain:

Thus,

y(t) = y(n) ≈

Y(z) ≈

Which suggests the s-to-z transformation:

X(z)

delay

backward difference operator17



Backward Difference Operator



Backward Difference method - Stability

- 0.5 = 0.5 - 0.5 = 0.5

The Left half s-plane onto the

interior of the circle with radius

0.5 and centre at 0.5 in the z-

plane

Stable analogue filters become stable digital filters.

However, poles are conned to a relatively small set of frequencies, 

no highpass filter possible!



Summary of the Backward Difference method

• Since the imaginary axis in the s domain are 
not mapped to the unit circle we can expect 
that the frequency response will be 
considerably distorted

• An analogue high-pass filter cannot be 
mapped to a digital high-pass because the 
poles of the digital filter cannot lie in the 
correct region

method is crude and rarely used



Bilinear transform

• Bilinear transform is a correction of the backwards 
difference method

• The bilinear transform (also known as Tustin's 
transformation) is defined as the substitution:

• It is the most popular method

• The bilinear transform produces a digital filter whose 

frequency response has the same characteristics 

as the frequency response of the analogue filter (but 

its impulse response may then be quite different).



The bilinear transform

The bilinear transform

• Note 1 : Although the ratio could have been written
(z-1)/(z+1), that causes unnecessary algebra later,
when converting the resulting transfer function into a 
digital filter;

• Note 2 : In some sources you will see the factor
(2/T)  multiplying the RHS of the bilinear transform; this 
is an optional scaling, but it cancels and does not affect 
the final result.



Where is the Bilinear Transform coming from?
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Properties of the Bilinear Transform

To derive the properties of the bilinear transform, solve

for z, and put

(1+ )2 21+ s 1+ + j +2
z = = =; hence z

(1− )21− s 1− − j 2+



Properties of the Bilinear Transform

Look at two important cases:

1. The imaginary axis, i.e.

boundary of stability for

=0. This corresponds to the

the analogue filter’s poles.

With =0, we have

the imaginary (frequency) axis in the s-plane

the unit circle in the z-plane

maps to

2. With <0, i.e. the left half-plane in the s-plane we have

left half s-plane maps onto the interior of the unit circle



Properties of the Bilinear Transform

Thus the bilinear transform maps the Left half s-plane onto the interior of the unit

circle in the z-plane:

s-plane
z-plane

This property allows us to obtain a suitable frequency response for the digital

filter, and also to ensure the stability of the digital filter.

1

1



Properties of the Bilinear Transform

z - 1
s =

z +1
- 1

=
+ 1

( )=



Properties of the Bilinear Transform

Hence the Bilinear Transform preserves the following
important features of the frequency response :

1.

2.

the Ω↔ ω mapping is monotonic, and

Ω= 0 is mapped to ω = 0, and Ω = ∞ is mapped to ω = π

(half the sampling frequency). Thus, for example,

a low-pass response that decays to zero at Ω = ∞
produces a low-pass digital filter
to zero at ω = π.

Mapping between the frequency

response that decays

3. variables is



Properties of the Bilinear Transform

of the analogue filter at frequency Ω is H(jΩ),If the frequency response

then the frequency response of the digital filter at the corresponding

frequency ω = 2 arctan(ω) is also H(j Ω).  Hence -3dB frequencies 

become -3dB frequencies, minimax responses remain minimax, etc.



Proof of Stability of the Filter

Suppose the analogue prototype H(s) has a stable pole at , i.e.

Then the digital filter is obtained by substituting

,Since H(s) has a pole at

because

has a pole at

However, we know that lies within the unit circle. Hence the filter
is guaranteed stable provided H(s) is stable.



Frequency Response of the Filter

The frequency response of the analogue filter is

The frequency response of the digital filter is

Hence we can see that the frequency response is warped by a function

Digital FrequencyAnalogue Frequency



Design using the bilinear transform

The steps of the bilinear transform method are as follows:

“Warp” the digital critical (e.g. band-edge or "corner") frequencies ωi , in 

other words compute the corresponding analogue critical frequencies Ω =

1.

i

tan(ωi/2).

2. Design an analogue filter which satisfies the resulting filter response

specification.

3. Apply the bilinear transform

to the s-domain transfer function of the

z-domain transfer function.

analogue filter to generate the required



Example: Application of Bilinear Transform

Design a first order low-pass digital filter with -3dB frequency of 1kHz

and a sampling frequency of 8kHz using a the first order analogue low-pass 

filter

which has a gain of 1 (0dB) at zero frequency, and a gain of -3dB ( = √0.5 )

at Ω   rad/sec (the "cutoff frequency ").c



Example: Application of Bilinear Transform

• First calculate the normalized digital cutoff frequency:
3dB cutoff frequency

sampling frequency

• Calculate the equivalent pre-warped analogue filter

frequency (rad/sec)

cutoff

• Thus, the analogue filter has the system function



Example: Application of Bilinear Transform

Apply Bilinear transform

As a direct form implementation:
Keep 0.2929 factorised to save 

one multiply

Normalise to unity for 

recursive implementation



Designing high-pass, band-pass and band-stop filters

• The previous examples we have discussed
have concentrated on IIR filters with low-pass

characteristics.

• There are various techniques available to
transform a low-pass filter into a high-
pass/band-pass/band-stop filters.

• The most popular one uses a frequency
transformation in the analogue domain.


