Design of FIR and
IR Filters



FIR as a class of LTI Filters

Transfer function of the filter is

Y(2) _ Spbiz
X)) 1+37  apzFk

H(z) =

Finite Impulse Response (FIR) Filters:
N = 0, no feedback



FIR Filters

Let us consider an FIR filter of length M (order N=M-1, watch out!
order — number of delays)

M—1 M-—1
y(n) = Z brx (n—k) = Z h(k)x(n—k)
k=0 k=0
X, —> — unit delay




FIR filters

Can immediately obtain the impulse response, with x(n)= &(n)

M—1

h(n)=y(n)= Z b, dn — k) =0b,

k=0

The impulse response is of finite length M, as required

Note that FIR filters have only zeros (no poles). Hence
known also as all-zero filters

FIR filters also known as feedforward or
non-recursive, or transversal



FIR Filters

Digital FIR filters cannot be derived from analog filters —
rational analog filters cannot have a finite impulse

response.

Why bother?

1. They are inherently stable

2. They can be designed to have a linear phase

3. There is a great flexibility in shaping their magnitude

response
4. They are easy and convenient to implement

Remember very fast implementation using FFT?



FIR Filter using the DFT

FIR filter: M1
y(n) = Z h(k)x(n—k)
k=0

Since h (n) and x (n) are finite-duration sequences, their convolution is also finite in du-
ration. The duration of the sequence y (n) is L + M — 1.

Let us consider N > L 4+ M — 1. Let us pad the sequences h (n) and x (n) with zeros
to increase their lengths to N and perform the N—point DFT. The frequency-domain

equivalent is
Y (B) = H (k)X (k)

at _ 2atk
with £ = =£=.

Now N-point DFT (Y(k)) and then N-point IDFT (y(n)) can be used
to compute standard convolution product and thus to perform
linear filtering (given how efficient FFT is)



Linear-phase filters

The ability to have an exactly linear phase response is the one
of the most important of FIR filters

H (w) = |H ()| /%)

where ¢ (w) = —wng

A general FIR filter does not have a linear phase response but
this property is satisfied when

hin)=4+h(M —-1—-n), n=0,1,...,M —1.

[> four linear phase filter types

Impulse response # coefs | H (w) Type

h(n)=h(M-1-n) | Odd e (M=1)/2 (h(“ MoL) f g \MoB/2 (ML —A)cos(wk’)) 1

h(n)=h(M—1—n) |Even |e «M-D/295M=9/2p (M _ 1y, ( (k— 1))

= | Qo | b

2

n

(n)
h(n)=—-h(M —-1—-mn) | Odd e JWM=1)/2=m /2] ( {U D2 (=L — k) sin (wk))
h(n)=—-h(M —1—-n) | Even e IW(M—1)/2—m/2 QZ(M 1)/2 h (& — k) sin (w (k- %))




FIR Design Methods

* Impulse response truncation — the simplest
design method, has undesirable frequency
domain-characteristics, not very useful but
Intro to ...

* Windowing design method — simple and
convenient but not optimal, i.e. order
achieved is not minimum possible

« Optimal filter design methods



Back to Our Ideal Low- pass Filter Example

Let us consider for example a simple ideal lowpass filter defined by

1if |w| <w,
Hy (w) { 0if we < |w| < 7.

It can be shown easily that the impulse response is given by

We SN WM

hq(n) =

T WeN

Desired impulse response has a sinc shape which is non-causal and infinite
in’' duration.

clearly
cannot
be implemented Heowf
in practice _
R S SR WW Jrote e




Approximation via truncation

e h (n) infinite in duration = to compute any sample of the output, we need to
know all samples of the input, both in the past and in the future!!
= Unacceptable, so what if we just clipp off the sinc at some large n

h(n) = sin (nwe) for |n| <M and 0 otherwise.
™m

e Here is what the frequency response now looks like for w. = 0.47 and different
values of M.

e One observes ripples in both passband/stopband and transition not abrupt
(leading to transition band).



Approximated filters obtained by truncation
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Though the transition band gets narrower asM — oo, the ripple remains!



Window Design Method

To be expected ...
Truncation Is just pre-multiplication by a rectangular window

— This is not very clever

— obviously one introduces a delay .
w (n) = liftn=0,1,....M —1

0 otherwise.

Fourier transform H (w) of the truncated filter h(n) = hg (n) w (n) is

1 ri

27

H (w) Hy (W)W (w—))dA

spectrum convolution

where W (w) is the Fourier transform of the rectangular window

W (w) = e 3@ (M=1)/2 sin (wM/2)
’ sin (w/2)




Rectangular Window Frequency Response

Fourier transtorm of the rectangular window

W (w) = e i@ (M=1)/2 sin (wM/2)
’ sin (w/2)

admits as magnitude and phase responses

. |sin (WM /2)|
6(w) = —w(M—-1)/2 when sin (wM/2) > 0
= —w(M —1)/2+ 7 when sin (wM/2) <0

|:> i.,e. W (w) has a piecewise linear phase



Window Design Method

e Practically, one uses truncated & delayed impulse response

~ A . 1 -
h(n)=h (77) - MT> where h (n) =

W, Sin (w.n)

1{_l\/r|)—1$“.![\/|2—1} (n)

T WeN

where M is the filter length & N =M — 1 is known as filter order.

e Delaying operation — introduce linear phase term.
= The resulting filter is causal and has a linear phase.
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Summary of Windows Characteristics

Window’s name | Mainlobe Mainlobe/sidelobe | Peak 20logyd
Rectangular /) M -13dB -21dB
Hanning 8w /M -32dB -44dB
Hamming 8w /M -43dB -53dB
Blackman 127 /M —58dB -74dB

We see clearly that a wider transition region (wider main-lobe)
IS compensated by much lower side-lobes and thus less ripples.



Filter realised with rectangular/Hanning windows
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Filter realised with Hanning windows
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Transition width can be improved by increasing the size of the
Hanning window to M = 40



Specification necessary for Window Design Method

.- cutoff frequency

Ié/_,_/’ IH(e72)y 3§ - maximum
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Response must not enter shaded regions



Passband / stopband ripples

Passband / stopband ripples are often expressed in dB:

passband ripple = 20 log,, (1+6,) dB,
or peak-to-peak passband ripple = 20 log;, (1+25,) dB;
minimum stopband attenuation = -20 log;q (65 ) dB.

Example: 6,= 6% |:> peak-to-peak passband ripple = 20 log;, (1+26,) = 1dB;

o;=0.01 |:> minimum stopband attenuation = -20 log,, (35) = 40dB.

The band-edge frequencies ws and o, are often called corner frequencies,
particularly when associated with specified gain or attenuation (e.g. gain =

-3dB).



Summary of Window Design Procedure

ldeal frequency response has infinite impulse response

To be implemented in practice it has to be
— truncated
— shifted to the right (to make is causal)

Truncation is just pre-multiplication by a rectangular window
— the filter of a large order has a narrow transition band

— however, sharp discontinuity results in side-lobe
Interference independent of the filter's order and shape
Gibbs phenomenon

Windows with no abrupt discontinuity can be used to reduce
Gibbs oscillations (e.g. Hanning, Hamming, Blackman)



Summary of the Key Properties of the Window
Design Method

1. Equal transition bandwidth on both sides of the ideal cutoff
frequency.

2. Equal peak approximation error in the pass-band and stop-
band.

3. Distance between approximation error peaksis
approximately equal to the width of the window main-lobe.

4. The width of the main-lobe is wider than the transition band.

approximation error pea
] T o H (e7%)
A S Ll . {,-r — Hua(edw) 5 Peak
|| transition approximation error
o \';bandvvi‘dth Is determined by the
s 5 e window shape,
= mainiobe ' iIndependent of the

/\ Wi s filter order.
A~ T,




Summary of the windowed FIR filter design
procedure

. Select a suitable window function

. Specify an ideal response Hy(®)

. Compute the coefficients of the ideal filter hy(n)

. Multiply the ideal coefficients by the window function to
give the filter coefficients

. Evaluate the frequency response of the resulting filter
and iterate If necessary (typically, it means increase M if
the constraints you have been given have not been
satisfied)



Multi-band Design

e So far, only lowpass filter: how do we design highpass, bandpass, etc. filters?

— treat them as sums and differences of lowpass filters.

e Erample: design the following highpass filter
Hd (I'I.U) — 1(—?1'._.—UJ,-_-)LJ|[LAJ(_-??T:} (w)

It can be rewritten as

sin (7n)  sin (w.n)
Hd (w) - 1(_Tr"?r] (DJ) o 1(_‘:'-’(?:‘-*-’(:} (w) :}:- h (n) - TT N Wﬂt
_-'V‘_ .‘—"_/ e

LP filter cutoff = LP filter cutoff w.

e Now we use window and delay this answer by M /2 to make it causal.



Frequency sampling method

e Drawbacks of the window design method:
e Start with Hy (w) and end up with approximation H (w), difficult to
predict values of H (w) at some specific frequencies (not big problem...)
e Computation of the IDTFT of arbitrary Hg (w) may be difficult.

e Simple idea: sample the desired frequency response Hg (w) at N frequencies
unif. spaced over [0, 27), compute the IDFT of these N samples = {h(n)}.

e Advantage: The filter frequency response lands exactly on the specified

values at the sampling points.

e Drawback: Difficult to control between those points (i.e. sinc-interpolated).



IR vs FIR Filters

e FIR filters often employed in problems where linear phase required.

e When phase distortion tolerable, IIR are usually favoured
e Typically require less parameters to achieve sharp cutoff filters.
e Thus for given response specification, lower computational
complexity/less memory (despite FFT cannot be used)

e Main problems of IIR filters.

e Difficult design.

e Stability problems.



IR as a class of LTI Filters

Difference equatlon

y(n) = ZﬂkJ(ﬂ—k Zbk“r(fn—k)

k=1 k=1
<:> Transfer function:
M _
H(Z) _ Y(*{:) k=0 bk”z "

X (‘Z) 1+ Zﬁil apzF

To give an Infinite Impulse Response (IIR), a filter must be

recursive, that is, incorporate feedback N#0,M# O
the recursive (previous output) terms feed back
energy into the filter input and keep it going.

(Although recursive filters are not necessarily |IR)



lIR Filters Design from an Analogue Prototype

* Given filter specifications, direct determination
of filter coefficients Is too complex.

* Well-developed design methods exist for
analogue low-pass filters

« Almost all methods rely on converting an
analogue filter to a digital one



Analogue filter Rational Transfer Function

Assume an analog filter can be described by a rational transfer function
({ar} and {Bx} real-valued)

H,(s) =

where H, (s) is the Laplace transform of the impulse response h, (t)

H,(s) = /m he (t) e 5dt.

In the time domain, it means that the input x (¢) and the output y (¢) are
related by M

d t
- zak AL =3, =)

®

N

Problem: how to convert sensibly analogue filters into digital ones
5




Analogue to Digital Conversion

Ay Im (2) e

s-plane

Re (2)

Hc(s) «— H(z)
e Analogue filters stable if poles on left half of the s-plane / Digital filters
stable if poles inside unit circle
‘ Left half of the s-plane should map inside the unit circle in the z-plane.
e The 72 axis in the s-plane should map the unit circle in the z-plane; i.e.
direct relationship between frequencies variables
[Mathematically = one-to-one mapping between (—oco,00) and (—m, 7).
6



Impulse Invariant method

Start with suitable analogue transfer function h. (¢) and discretize it
h(n) = h. (nT) where T = 1/F, sampling period.

Sampling in time < Periodic repetition in frequency

H(w)=F, Y H[(w-—27k)F]

k=—c0

where w = 27 f and f = F'/F; is the normalized frequency



Impulse Invariant method: Steps

Compute the Inverse Laplace transform to
get Impulse response of the analogue filter

Sample the impulse response (quickly
enough to avoid aliasing problem)

Compute z-transform of resulting sequence



Example 1 — Impulse Invariant Method

Consider first order analogue filter

84

He(s)=—>— = 1-
S+ « S + «

Corresponding impulse response Is

he(t) = 8(t)-ae™ " (H)V
\W_/

The presence of delta term prevents sampling of
Impulse response which thus cannot be defined

Fundamental problem: high-pass and band-stop filters have
functions with numerator and denominator polynomials of the
same degree and thus cannot be designed using this method



Example 2 — Impulse Invariant Method

Consider an analogue filter

Hos) = 7= )

_ ot
Step 1. Impulse response he (t) = Ce
of the analogue filter o)

Step 2. Sample the impulse

response j‘>

Step 3. Compute z- H(z) =

transform

The poles are mapped as o — €



Impulse Invariant Method

Indeed, in the general case the poles are mapped as

k (1—>€“T \

since any rational transfer function with the numerator
degree strictly less than the denominator degree can be

decomposed to partial fractions

C
s — o

H.(s) =Y

and similarly it can be shown




Impulse Invariant Method: Stability

Since poles are mapped as:

k (_}5 — e(]f,

stable analogue filter Is transformed Into
stable digital filter

s=0+4+ Q& z =rel?

o <0 j‘> ‘8(@‘<1




Summary of the Impulse Invariant Method

e Determine analogue filter H. (s) satisfying specifications for

desired digital filter (not discussed here!).

e If necessary, expand H. (s) using partial fractions.

e Obtain the z-transform of each partial fraction z

e Obtain H (z) by combining the z-transforms of the partial fractions.



Summary of the Impulse Invariant Method

« Advantage:

— preserves the order and stability of the
analogue filter

« Disadvantages:

— Not applicable to all filter types (high-pass,
band-stop)

— There Is distortion of the shape of
frequency response due to aliasing



Matched z-transform method

e Matched z-transform: very simple method to convert analog filters into
digital filters.

M M
IT (s — zx) [T (1—e*Tz71)
k=1 matched z-transform k=1

H(s) = — — H(z) = — :
[T (s —pk) [T (1 —epelz™1)
k=1 k=1

i.e. poles and zeros are transformed according to

2 — e* 1 p — ePrT

where 1" is the sampling period.
e Poles using this method are similar to impulse invariant method.

e Zeros are located at a new position.
= This method suffers from aliasing problems.



Example of Impulse Invariant vs Matched z transform
methods

e Consider the following analog filter into a digital IIR filter
s+ 2 1/2 1/2

H (s) = GrD)G+3) (+D) @ G+3)

e Impulse invariant method

H (2 1/2 . 1/2 1— L (e3T 4 e T) !
2] = — .
l—eTz71  1—-e3Tz71 (1—-eTz7H)(1—-—e3Tz1)

e Matched z-tranform
(1 - e_sz_l)

(1—eTz=1)(1—e 3Tz 1)

H(z) =

= Same poles but different zero.



Backward Difference Method

The analogue-domain variable s represents differentiation.

We can try to replace s by approximating differentiation operator in the
digital domain:

dx (t) _:r:(nT)—:B((n—l)T)_m(n)—m(n—l)
dt |,_ - T T
Thus
: d B B
- 10 . 2020

YOE ' (1-27") X(@)
Which suggests the s-to-z transformation:

s« T 1 (1 o z_l)
\\
delay

— _
Y

backward difference operatori7



Backward Difference Operator

Consider now the second order derivative

d?z (t) d [dx(t)
dt2 t=nT dt dt t=nT

a2 (OT) —z (= DT)] -~ [r((n = D) T) — 2 ((n = 2 T)]
T
x(n)—2x(n—1)+x(n—2)
T2 '

This means that )
s 1—-22714272 (1-271)

S

T2 T2
Similarly, one can easily check by induction that

(1—=1)"
TF

sk =




Backward Difference method - Stability

So to convert the analogue filter into a digital one, we simply use

H(z) = H, (3)|3:(1_z—1)/T-
1

S z I:> ~— 1_<T
For s = 4€), we obtain

1 _ (14 7QT)
=TT =) Z2-05=05 g g7 EE)[2-05]=05
' The Left half s-plane onto tf&
Interior of the circle with radius

0.5 and centre at 0.5 in the z-
N \\ plane

:> Stable analogue filters become stable digital filters.
However, poles are conned to a relatively small set of frequencies,
no highpass filter possible!




Summary of the Backward Difference method

« Since the imaginary axis in the s domain are
not mapped to the unit circle we can expect
that the frequency response will be
considerably distorted

« An analogue high-pass filter cannot be
mapped to a digital high-pass because the
poles of the digital filter cannot lie in the
correct region

> method is crude and rarely used




Bilinear transform

Bilinear transform is a correction of the backwards
difference method

The bilinear transform (also known as Tustin's
transformation) is defined as the substitution:

~—1

+ 2z~ 1

s=u() =7

It is the most popular method

The bilinear transform produces a digital filter whose
frequency response has the same characteristics
as the frequency response of the analogue filter (but
Its Impulse response may then be quite different).



The bilinear transform

The bilinear transform

~—1

+ 271

s=v() =7

. Notel:. Although the ratio could have been written

(z-1)/(z+1), that causes unnecessary algebra later,
when converting the resulting transfer function into a

digital filter,

. Note2: |n some sources you will see the factor
(2/T) multiplying the RHS of the bilinear transform; this

IS an optional scaling, but it cancels and does not affect
the final result.



Where Is the Bilinear Transform coming from?

e Consider the following analogue system
b dy (1)

H(s):8+a<:>7:—ay(t)+bm(t). (1)

e Approximate the derivative by a trapezoidal approximation; i.e.

y (nT) = [0 du+y ((n—1)T) )

—~

dy(nT dy(nT —T
ygﬁ ) 4 y(dt )}+y(nT—T)

+ Now plugging (1) in (2)
(1+—) ( )y(n—nzbf( (n) + 2 (n — 1))

where z (k) £ z (k‘T ) /y (k) =y (kT). Applying the z-transform, one obtains
b 2 (11—
H(z) = (Z) = = 54 — © :
14271

X (2) 2 (1—2:1) ta T



Properties of the Bilinear Transform

To derive the properties of the bilinear transform, solve
for z, and put s = o + 5

1 —z1

0T 1+ 21 j‘>

: 2 2
=1 ¥S 1o JL hence 2|° = (L+0)" +0
1-s 1-0-jQ (1-0)? +Q?



Properties of the Bilinear Transform

ook at two important cases.

1. The imaginary axis, i.e. o =0. This corresponds to the
boundary of stability for the analogue filter’s poles.

With =0, we have

(14+0)% +Q*

=1
(1-0)2+Q?

2]* =

j} the imaginary (frequency) axis in the s-plane  maps to
the unit circle in the z-plane

2. With 0<0, I.e. the left half-plane in the s-plane we have

, (140)*4Q*
- (1-0)24Q2
j> left half s-plane maps onto the interior of the unit circle

|2 <1, (6<0)




Properties of the Bilinear Transform

Thus the bilinear transform maps the Left half s-plane onto the interior of the unit
circle in the z-plane:

sssssss
zzzzzzz

P(s)

N

This property allows us to obtain a suitable frequency response for the digital
filter, and also to ensure the stability of the digital filter.



Properties of the Bilinear Transform

If s =0+ jQ and 2z = re’“, then one can easily establish that

_z-1
>= 741 |
rel* -1
T e+ 1
_ ré —1 L 2r sin w )
1+ 72+ 2rcosw J 1 + 72 + 2r cos w,

Clearly if » = 1 then ¢ = 0 (unit circle maps onto imaginary axis)

Q=-—2% _tan (f) & w = 2arctan (12)
1l + cosw 2




Properties of the Bilinear Transform

Hence the Bilinear Transform preserves the following
Important features of the frequency response :

1. the Q< ®» mapping Iis monotonic, and

2. Q=0is mappedtow =0, and Q =« is mapped to ® ==
(half the sampling frequency). Thus, for example,

a low-pass response that decays to zero at Q = «©

produces a low-pass digital filter response that decays
to zero at o = .

3. Mapping between the frequency variables is

() = tan (g) & w = 2arctan (€2)



Properties of the Bilinear Transform

w = 2 arctan(<2)

—3 = I 1 L 1 L 1
—10 —8 —6 -4 -2 o 2 4 S 8 10

If the frequency response of the analogue filter at frequency 2 is H(j€2),
then the frequency response of the digital filter at the corresponding

frequency o = 2 arctan(o) is also H(j 2). Hence -3dB frequencies
become -3dB frequencies, minimax responses remain minimax, etc.



Proof of Stability of the Filter

1— 21 1
s=¥@) =T s= v =T

Suppose the analogue prototype H(s) has a stable poleat o + 54, I.e.

H(o+jiQ) — 00, a<0

Then the digital filter 77 (z) is obtained by substituting s = ¥(2)

H(z) = H (¢(2))

Since H(s) hasapoleat o + jQ , H (¥(z)) hasapoleat (o +jQ)
because

H(yp~ (o +i2)) = H(p(yp~ (o +49)) = H(o +j2) — o

However, we know that ¥~ !'( s+ jQ) lies within the unit circle. Hence the filter
IS guaranteed stable provided H(s) is stable.




Frequency Response of the Filter

The frequency response of the analogue filter is

. Z_l—zl_ L= _1821—|—3

The frequency response of the digital filter is

H (exp(jQ)) = H (¢ (exp(j€2)))

Plexp(j)) = ORI
— H (j tan(Q/2)

-1+ exp(—59Q)
_ exp(—j2/2)(exp(j2/2) — exp(—j2/2))
oxp(—79/2) (exp(+7/2) T exp(—$2/2))
_ jsin(€2/2)
cos(€2/2)
= jtan(§2/2)

Hence we can see that the frequency response is warped by a function

w = tan(2/2)
Analogue Frequency | — Digital Frequency




Design using the bilinear transform
The steps of the bilinear transform method are as follows:

1. “Warp” the digital critical (e.g. band-edge or "corner") frequencies o; , In

other words compute the corresponding analogue critical frequencies Q 5
tan(w;/2).

2. Design an analogue filter which satisfies the resulting filter response
specification.

3. Apply the bilinear transform
1—z 1!

§ = 14+z-1

to the s-domain transfer function of the analogue filter to generate the required
z-domain transfer function.



Example: Application of Bilinear Transform

Design a first order low-pass digital filter with -3dB frequency of 1kHz
and a sampling frequency of 8kHz using a the first order analogue low-pass

filter
1

H(s) =
() 14+ s/,

which has a gain of 1 (0dB) at zero frequency, and a gain of -3dB (=V0.5)
at {2 _rad/sec (the "cutoff frequency ").



Example: Application of Bilinear Transform

«  First calculate the normalized digital cutoff frequency:

3dB cutoff frequency

L
we = sEA=2m =7 /4
+——— sampling frequency

» Calculate the equivalent pre-warped analogue filter cutoff
frequency (rad/sec)
(2. = tan (w./2) = tan (7/8) = 0.4142

« Thus, the analogue filter has the system function

1

H(S) - 1+S/Qc

1 _0.4142
1+5/0.4142 s+ 0.4142




Example: Application of Bilinear Transform

Apply Bilinear transform

04142
H (s) = 704142

1— 21
8:
14 21

= 4. - 0.2929 (1 + 2~ 1)
T 120414221

«—— | Normalise to unity for

recursive implementation

As a direct form implementation: “Keep 02029 factorised to save

/ one multlply




Designing high-pass, band-pass and band-stop filters

* The previous examples we have discussed
have concentrated on IIR filters with low-pass

characteristics.

* There are various technigues available to
transform a low-pass filter into a high-
pass/band-pass/band-stop filters.

 The most popular one uses a frequency
transformation in the analogue domain.



